
Stader Labs -
ERC20 Staking

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: July 26th, 2022 - August 4th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

POST ASSESSMENT 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) OWNER CAN POTENTIALLY WITHDRAW ALL THE STAKING FUNDS -

MEDIUM 13

Description 13

Proof of Concept 13

Risk Level 14

Recommendation 15

Remediation Plan 15

3.2 (HAL-02) MAX STAKING AMOUNT CAN BE SET TO ZERO - LOW 16

Description 16

Code Location 16

Risk Level 17

Recommendation 17

Remediation Plan 17

3.3 (HAL-03) MIN STAKING AMOUNT CAN BE GREATER THAN THE MAX STAKING

AMOUNT - LOW 18

1

Description 18

Code Location 18

Risk Level 19

Recommendation 19

Remediation Plan 19

3.4 (HAL-04) REWARDS EMISSION RATE CAN BE SET TO ZERO - INFORMATIONAL

20

Description 20

Code Location 20

Risk Level 21

Recommendation 21

Remediation Plan 21

4 AUTOMATED TESTING 22

4.1 STATIC ANALYSIS REPORT 23

Description 23

Slither results 23

4.2 AUTOMATED SECURITY SCAN 26

Description 26

MythX results 26

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/02/2022 Gustavo Dutra

0.2 Document Updates 08/03/2022 Mostafa Yassine

0.2 Document Updates 08/03/2022 Manuel Garcia

0.3 Document Updates 08/04/2022 Gustavo Dutra

0.4 Draft Review 08/04/2022 Kubilay Onur Gungor

0.5 Draft Review 08/05/2022 Gabi Urrutia

1.0 Remediation Plan 08/12/2022 Gustavo Dutra

1.1 Remediation Plan Review 08/15/2022 Gabi Urrutia

1.2 Document Updates 09/05/2022 Manuel García

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

3

mailto:Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Kubilay Onur
Gungor

Halborn Kubilay.Gungor@halborn.com

Gustavo Dutra Halborn Gustavo.Dutra@halborn.com

Manuel García Halborn Manuel.Diaz@halborn.com

4

mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Kubilay.Gungor@halborn.com
mailto:Gustavo.Dutra@halborn.com
mailto:Manuel.Diaz@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Stader Labs engaged Halborn to conduct a security audit on their smart

contracts beginning on July 26th, 2022 and ending on August 04th, 2022.

The security assessment was scoped to the smart contracts provided in the

GitHub repositories stader-labs/sd-erc20-staking-v1

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned

three full-time security engineers to audit the security of the smart

contract. The security engineers are blockchain and smart-contract

security experts with advanced penetration testing, smart-contract

hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

by Stader Labs team.

POST ASSESSMENT:

After the initial assessment the commit cd4518ee9bd31718c53a8dc27625a3b48a7d8681

was also analysed to ensure minor changes in the code were secured.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/sd-erc20-staking-v1/commit/933bdbc97988639f42995537ea6716d7ee646aba
https://github.com/stader-labs/sd-erc20-staking-v1/commit/cd4518ee9bd31718c53a8dc27625a3b48a7d8681

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

- Ownable.sol

- Rewards.sol

- Staking.sol

- Timelock.sol

- Undelegation.sol

- XSD.sol

Commit ID:

- 933bdbc97988639f42995537ea6716d7ee646aba

Fixed commit IDs:

- d4463346158a014a95f699a07b761770dff61515

- e600a0a08719e3140ed955d6dd316bdf606bdeb1

- cd4518ee9bd31718c53a8dc27625a3b48a7d8681

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/sd-erc20-staking-v1/commit/933bdbc97988639f42995537ea6716d7ee646aba
https://github.com/stader-labs/sd-erc20-staking-v1/commit/d4463346158a014a95f699a07b761770dff61515
https://github.com/stader-labs/sd-erc20-staking-v1/commit/e600a0a08719e3140ed955d6dd316bdf606bdeb1
https://github.com/stader-labs/sd-erc20-staking-v1/commit/cd4518ee9bd31718c53a8dc27625a3b48a7d8681

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 2 1

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)
(HAL-03)

(HAL-04)

10

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - OWNER CAN POTENTIALLY
WITHDRAW ALL THE STAKING FUNDS

Medium SOLVED - 08/11/2022

HAL02 - MAX STAKING AMOUNT CAN BE
SET TO ZERO

Low SOLVED - 08/11/2022

HAL03 - MIN STAKING AMOUNT CAN BE
GREATER THAN THE MAX STAKING AMOUNT

Low SOLVED - 08/11/2022

HAL04 - REWARDS EMISSION RATE CAN
BE SET TO ZERO

Informational SOLVED - 08/11/2022

11

EX
EC

UT
IV

E
OV

ER
VI

EW

12

FINDINGS & TECH
DETAILS

3.1 (HAL-01) OWNER CAN POTENTIALLY
WITHDRAW ALL THE STAKING FUNDS -
MEDIUM

Description:

The function queuePartialFunds, that is inherited from the Timelock

contract in Staking.sol enables the owner to queue to withdraw all

the funds of the Staking contract after the lockedPeriod passes.

However, the owner can also change the lockedPeriod to zero, enabling

instant withdrawal after calling the queuePartialFunds function.

This causes a centralization issue, leaving space for more potential

damage in case the owner’s account gets compromised somehow.

Proof of Concept:

We can see the following scenario in this Proof of Concept:

1. user1 and user2 staked 1000 Stader tokens;

2. The compromised admin sets lockedPeriod to zero;

3. Compromised admin queue for all funds to withdraw;

4. Withdraw it;

5. Compromised admin gets the balance from the withdrawal;

6. user1 cannot unstake their funds anymore.

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 5

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

1. Set a minimum limit for the lockedPeriod, so there is no chance of

an instant withdraw from the queue.

2. Consider removing the queuePartialFunds function.

Remediation Plan:

SOLVED: The Stader Labs team fixed the issue by setting a

fixedLockedPeriod of 1 day, which will be the minimum lock

period that can be set in the contract. With this, even if the owner

was compromised, they would have time to alert users to withdraw their

funds.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) MAX STAKING AMOUNT CAN
BE SET TO ZERO - LOW

Description:

The function updateMaxDeposit accepts an uint256 value _newMaxDeposit of

0. This will prevent users from being able to stake any amount, as the

check in the stake function requires the staked amount to be smaller than

the maxDeposit amount.

This could be done accidentally by the owner of the contract or in case

the owner gets compromised.

Code Location:

Listing 1: staking.sol (Line 159)

157 /// @notice Set maximum deposit amount (onlyOwner)

158 /// @param _newMaxDeposit the maximum deposit amount in

ë multiples of 10**8

159 function updateMaxDeposit(uint256 _newMaxDeposit) external

ë onlyOwner {

160 require(maxDeposit != _newMaxDeposit , 'Max Deposit is

ë unchanged ');

161 emit maxDepositChanged(_newMaxDeposit , maxDeposit);

162 maxDeposit = _newMaxDeposit;

163 }

Listing 2: staking.sol (Line 71)

67 function stake(uint256 _amount) external whenNotPaused

ë nonReentrant {

68 require (! isStakePaused , 'Staking is paused ');

69

70 require(

71 _amount > minDeposit && _amount <= maxDeposit ,

72 'Deposit amount must be within valid range '

73);

74 require(

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

75 staderToken.balanceOf(address(rewardsContractAddress)) > 0,

76 'Rewards contract cannot have zero balance '

77);

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

Verify that the _newMaxDeposit received in the function updateMaxDeposit

exceeds zero.

Remediation Plan:

SOLVED: The Stader Labs team fixed the issue by checking if the received

_newMaxDeposit exceeds zero.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) MIN STAKING AMOUNT CAN
BE GREATER THAN THE MAX STAKING
AMOUNT - LOW

Description:

The function updateMinDeposit accepts a uint256 value _newMinDeposit, but

it does not verify that this value is smaller than the maxDeposit amount.

In case the minDeposit is greater than the maxDeposit, then the required

statement in the staking function will always fail.

This could be done accidentally by the owner of the contract or in case

the owner gets compromised.

Code Location:

Listing 3: staking.sol

151 /// @notice Set minimum deposit amount (onlyOwner)

152 /// @param _newMinDeposit the minimum deposit amount in

ë multiples of 10**8

153 function updateMinDeposit(uint256 _newMinDeposit) external

ë onlyOwner {

154 require(minDeposit != _newMinDeposit , 'Min Deposit is

ë unchanged ');

155 emit minDepositChanged(_newMinDeposit , minDeposit);

156 minDeposit = _newMinDeposit;

157 }

Listing 4: staking.sol (Line 71)

67 function stake(uint256 _amount) external whenNotPaused

ë nonReentrant {

68 require (! isStakePaused , 'Staking is paused ');

69

70 require(

71 _amount > minDeposit && _amount <= maxDeposit ,

72 'Deposit amount must be within valid range '

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

73);

74 require(

75 staderToken.balanceOf(address(rewardsContractAddress)) > 0,

76 'Rewards contract cannot have zero balance '

77);

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

Verify that _newMinDeposit is strictly smaller than maxDeposit.

Remediation Plan:

SOLVED: The Stader Labs team fixed the issue by checking if the value

received in updateMinDeposit is less than maxDeposit.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) REWARDS EMISSION RATE
CAN BE SET TO ZERO - INFORMATIONAL

Description:

In the contract Rewards, the state variable emissionRate is

used to calculate the rewards’ distribution in the function

distributeStakingRewards().

This state variable is set by the function setEmissionRate(), which does

not check if the received value is different from zero.

If this value is set to zero, the calculation of the rewards’ distribution

will always result in zero; therefore, no reward will be distributed.

This can happen mistakenly or in case the owner gets compromised.

Code Location:

Listing 5: Rewards.sol (Line 70)

63 /// @dev currently we will distribute the rewards every 24 hours

ë and is controlled by offchain function

64 function distributeStakingRewards () external whenNotPaused

ë nonReentrant {

65 require(staderToken.balanceOf(address(this)) > 0, 'Contract

ë balance should be greater than 0');

66 uint256 currentTimestamp = block.timestamp;

67 uint256 epochDelta = (currentTimestamp - lastRedeemedTimestamp

ë);

68 lastRedeemedTimestamp = currentTimestamp;

69 epoch ++;

70 uint256 epochRewards = (epochDelta * emissionRate);

71

72 uint256 totalRewards = staderToken.balanceOf(address(this));

73 if (epochRewards > totalRewards) epochRewards = totalRewards;

ë // this is important

74 emit DistributedRewards(stakingContractAddress , epochRewards ,

ë currentTimestamp);

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

75 require(

76 staderToken.transfer(stakingContractAddress , epochRewards),

77 'Failed to transfer rewards '

78);

79 }

Listing 6: Rewards.sol (Line 89)

85 /// @notice Emission rate is defined by SD per second.

86 /// @param _emissionRate new value for the emission rate

87 function setEmissionRate(uint256 _emissionRate) external

ë onlyOwner {

88 require(emissionRate != _emissionRate , 'Emission rate

ë unchanged ');

89 emissionRate = _emissionRate;

90 emit NewEmissionRate(emissionRate);

91 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Check if the received value in setEmissionRate is different from zero,

and revert the transaction otherwise.

Remediation Plan:

SOLVED: The Stader Labs team fixed the issue by checking to only accept

a value greater than zero in the setEmissionRate function.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

22

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them

correctly into their abis and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

Ownable.sol

Timelock.sol

Undelegation.sol

23

AU
TO

MA
TE

D
TE

ST
IN

G

Rewards.sol

24

AU
TO

MA
TE

D
TE

ST
IN

G

Staking.sol

• No major issues found by Slither.

25

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers in

order to locate any vulnerabilities.

MythX results:

SD.sol

Rewards.sol

Staking.sol

26

AU
TO

MA
TE

D
TE

ST
IN

G

Timelock.sol

• No major issues were found by MythX. MythX correctly flagged that

some state variables are missing the public/private keyword, so all

of them will be declared as private by default.

27

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	POST ASSESSMENT

	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

